Dynamical consequences of lesions in cortical networks.

نویسندگان

  • Christopher J Honey
  • Olaf Sporns
چکیده

To understand the effects of a cortical lesion it is necessary to consider not only the loss of local neural function, but also the lesion-induced changes in the larger network of endogenous oscillatory interactions in the brain. To investigate how network embedding influences a region's functional role, and the consequences of its being damaged, we implement two models of oscillatory cortical interactions, both of which inherit their coupling architecture from the available anatomical connection data for macaque cerebral cortex. In the first model, node dynamics are governed by Kuramoto phase oscillator equations, and we investigate the sequence in which areas entrain one another in the transition to global synchrony. In the second model, node dynamics are governed by a more realistic neural mass model, and we assess long-run inter-regional interactions using a measure of directed information flow. Highly connected parietal and frontal areas are found to synchronize most rapidly, more so than equally highly connected visual and somatosensory areas, and this difference can be explained in terms of the network's clustered architecture. For both models, lesion effects extend beyond the immediate neighbors of the lesioned site, and the amplitude and dispersal of nonlocal effects are again influenced by cluster patterns in the network. Although the consequences of in vivo lesions will always depend on circuitry local to the damaged site, we conclude that lesions of parietal regions (especially areas 5 and 7a) and frontal regions (especially areas 46 and FEF) have the greatest potential to disrupt the integrative aspects of neocortical function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synchronization analysis of complex dynamical networks with hybrid coupling with application to Chua’s circuit

Complex dynamic networks have been considered by researchers for their applications in modeling and analyzing many engineering issues. These networks are composed of interconnected nodes and exhibit complex behaviors that are resulted from interactions between these nodes. Synchronization, which is the concept of coordinated behavior between nodes, is the most interested behavior in these netwo...

متن کامل

Different Profiles of Verbal and Nonverbal Auditory Impairment in Cortical and Subcortical Lesions

A B S T R A C T Introduction:We investigated differential role of cortical and subcortical regions in verbal and non-verbal sound processing in ten patients who were native speakers of Persian with unilateral cortical and/or unilateral and bilateral subcortical lesions and 40 normal speakers as control subjects. Methods: The verbal tasks included monosyllabic, disyllabic dichotic and diotic tas...

متن کامل

Synchronization criteria for T-S fuzzy singular complex dynamical networks with Markovian jumping parameters and mixed time-varying delays using pinning control

In this paper, we are discuss about the issue of synchronization for singular complex dynamical networks with Markovian jumping parameters and additive time-varying delays through pinning control by Takagi-Sugeno (T-S) fuzzy theory.The complex dynamical systems consist of m nodes and the systems switch from one mode to another, a Markovian chain with glorious transition probabili...

متن کامل

Parallel processing in human audition and post-lesion plasticity

Recent activation and electrophysiological studies have demonstrated that sound recognition and localization are processed in two distinct cortical networks that are each present in both hemispheres. Sound recognition and/or localization may be, however, disrupted by purely unilateral damage, suggesting that processing within one hemisphere may not be sufficient or may be disturbed by the contr...

متن کامل

Parallel processing in human audition and post-lesion plasticity

Recent activation and electrophysiological studies have demonstrated that sound recognition and localization are processed in two distinct cortical networks that are each present in both hemispheres. Sound recognition and/or localization may be, however, disrupted by purely unilateral damage, suggesting that processing within one hemisphere may not be sufficient or may be disturbed by the contr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human brain mapping

دوره 29 7  شماره 

صفحات  -

تاریخ انتشار 2008